Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-hydration Conditions in Grasses from the Lolium-Festuca Complex
نویسندگان
چکیده
Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass) × Festuca arundinacea (tall fescue) were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol, and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are discussed. HIGHLIGHTS A higher drought tolerance of grasses could be associated with an earlier lipidome response to a stress signal and with a membrane regeneration after stress cessation accompanied by a turnover of chloroplast lipids.
منابع مشابه
Water Deficit Affects Primary Metabolism Differently in Two Lolium multiflorum/Festuca arundinacea Introgression Forms with a Distinct Capacity for Photosynthesis and Membrane Regeneration
Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity ...
متن کاملGenetic Similarities Among Iranian Populations of Festuca, Lolium, Bromus and Agropyron Using Amplified Fragments Length Polymorphism (AFLP) Markers
The study of genetic variation and phylogenetic relationships is essential for the efficient selection of superior plant material and conducting introgression breeding programs. In Iran, despite the wide geographical distribution of grasses no report is available on the genetic diversity and relationships of cool season grass populations. In this study amplified fragment length polymorphism (AF...
متن کاملMorphophysiological and biochemical changes in tall fescue (Festuca arundinacea Schreb.) under combined salinity and deficit irrigation stresses
Water salinity and drought are the major abiotic stresses limiting turf grass growth. On the other hand, shortage of waterresources and salinity of water and soil in the arid and semi-arid zones such as Iran, are the restricting factors in developinglawn turf grasses. An experiment was conducted to evaluate the combined effects of water salinity and deficit irrigation ontall fescue (Festuca aru...
متن کاملAssociation of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions
Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse perennial ryegrass (Lolium pere...
متن کاملPlastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex
Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca speci...
متن کامل